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ABSTRACT

We propose a class of bounded influence robust regression estimators with
conditionally unbiased estimating functions given the design. Optimal estimators
are found within this class. Applications are made to generalized linear models.

An example applying logistic regression to food stamp data is discussed. . ~ .~

Key Words and Phrases : Robust regression, Bounded Influence, Asymptotic Bias

Generalized Linear Models. Linear Regression.
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In this paper we study robust estimation in a model with explanatory

variables X : (xi'Yi) are assumed to be independent and identically distributed ‘
. with joint distribution Pe(dylx)F(dx). We consider M-estimators defined

implicitely by the equation

W(Y;.X,.8 ) = 0. (1.1)

n Mz

i=1
In (1.1), 6 belongs to a subset Q2 of RP and ¢ takes values in RP. Usually. ¢ is

required to be Fisher-consistent, i.e.,

JS ¥(y.x.8) Pe(dylx)F(dx) =0 for all @, (1.2)
which implies consistency in the usual sense under weak regularity conditions. In
this paper we require a stronger form of (1.2):

J w(y.x.B)Pe(dy]x) =0 for all x and all @, (1.3)

which we will call conditional Fisher-consistenc.

In the linear model with symmetric errors, essentially all Fisher-consistent
estimators which are optimal in some sense automatically satisfy (1.3). This is
not the case with asymmetric errors or for generalized linear models. Stefanski,
et al. (1986) have {nvestigated robust estimators satisfying (1.2} (with F the
empirical distribution function of the {Xi)) but not (1.3). However, conditional
Fisher consistency is an appealing concept because 1{t does not involve the
distribution of the explanatory variables {Xi}. which is independent of the
parameter of interest. Moreover, these estimators have the advantages of being
computationally simpler in certain cases (Section 3) and less affected by the
estimation of nufsance parameters (Section 4).

Recall some general results and definitions from robust statistics (see

Hampel et. al., 1986). The influence function of an M-cstimator is

-1
IC (y.x.8) = D 1(8) ¥(y.x.8): (1.4)
v v
-;.fﬂﬁfﬁ”4:¥¥$7~afm;ﬂfﬁﬁﬁvbffv;;J&ﬁ"r%“”a*“ e et ater e
R A N P P e ,-'_- R S AP PP T \' " e ._ ".._-. ORI T I
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-2 - .
~
by

3 ~
— ~
where D,(8) = - 35 JJ wly.x.B) Py(dy|x)F(dx) |, - (1.5)
Under regularity conditions, Nl/2 (ON - 68) {is asymptotically normal with o
covariance matrix .
-1 -T .3
D,(8) " W (8) D (8) " = V(¥) = V(y.8). (1.6) p
where W,(0) = E[4(8)%(8)'] . (1.7) s
Finally we consider the self-standardized influence 4
2 X
2 (acy) T -1
s(¥)” = sup sup — = sup ¢ Ww ¥ (1.5) ~
Yox MO Ty VX g
which measures the maximal influence an observation can have on a linear 2
Py
combination of interest standardized by the standard deviation of this linear
combination. Integrating (1.8) shows that s(w)2 2 p. For other measures of g
influence, see for example Giltinan, et. al (1986). The usual goal of bounded P
influence esicimation 1is to minimize the asymptotic covariance (1.6) subject to a -
bound on the measure of influence, in this case (1.8). As in Giltinan, et. al v
’
‘
(1086), optimal estimators satisfying this goal depend on the measure of <3
influence. P
.
2. LINFAR REGRESSION WITH ASYMMETRIC FRRORS
The purpose of this section is to show that the differences between (1.2) and i
(1.3) are relevant also in linear regression if the errors are not symmetric. We g
consider the model =
T N
Yl = 60 + xiG +ou, (2.1) -
where (ui) are {ndependent and i{dentically distributed with common density g )
having no point of symmetry. The usual design matrix is assumed to be of full d
rank. The vector 8 s of length (p-1). The mcst important proposals for ~
o
'4;;‘;;::;;\-‘;'. o e R e ?




M-estimators in linear regression are the Mallows and Schweppe forms:

T T,T
wu(y.x.e) = w(x) w(y—eo—x 8)(1 x°) (2.2)
T.T
v (¥.x.8) = w(x) #((y-8,-x"0) / w(x))(1 x')". (2.3)
Here w(x) is a scalar weight function and ¢ is a scalar function. Without

additional assumptions on g, BO is not identifiable, but the following result

gives conditions for consistency of 6. For related results, see Carroll (1979).

THEOREM 2.1 :
i) For the Mallows-form (2.2), there is a constant 7T such that
W(y.x.60+r.91 ..... Bp) satisfies (1.3).

ii) If the x, are symmetrically distributed with center c € RP and if w(X-c) =
W(-X+c), then there is a constant T such that for the Schweppe form (2.3)
¢(y.x.Go+T.Bl,....9p) satisfies (1.2), but in general not (1.3).

PROOF: i) is obvious by defining 7 as the solution of [ y(u-7)g(u)du = O. In

case ii) define T as the solution of

JJ w(x) ¢({u-7)/w(x)) g(u) F(dx)du = O.
This is just (1.2) for the first component of ¢. For the other components we

observe that

N} xy w(x) ¢((u-1)/w(x)) g(u) F(dx)du
ff(xj-cj)W(X) #((u-1)/w(x)) g(u) F(dx)du

by symmetry. so {1.2) holds. Equation (1.3) does not hold in general, because the

0]

n

solution 7 of
I ¢((u-7)/w(x)) g(u)du = O

depends in most cases on X. o

Thus, the Mallows form has the advantage of being a conditionally unbiased

estimating equation even when the (xi) or (ui) are not symmetrically distributed.
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3. GENERALIZFED LINEAR MODELS

We consider the canonical form of generalized linear models, where
Pe(dy|x) = exp(y x'6 - G(x'6) - s(y)} u(dy). 3.1 -
If g is the derivative of G, the likelihood score function is
£(y.x.8) = {y-g(x 0)}x. (3.2)

Note that (3.2) satisfies (1.3), so that the score is conditionally unbiased.
Because 2 is proportional to x, the influence is unbounded, i.e., 52(8) = o,

We are looking here for M-estimators satisfying (1.3) and s(¢) < b which
minimize V(y¥) in some sense. In analogy with a general principle for constructing

optimal robust estimators (Hampel, et. al (1586), Section 4.3), we consider the

following ¥ function:

1
Voona(v-x.8.8) = d(v.x.0.B) w (ld(y.x.0.8)[(x'B"'x)?) x. (3.3)
where
1
d(y.x.8.B) = y-g(x'8) - c(x18. b/(x! B 'x)?)

and wb(a) = Hb(a)/a.
where Hb is the Huber function Hb(a) = min(a,b) (a > 0).

We work within the context of the Schweppe-form, although related results are
obtainable for the Mallows-form as in Stefanski, et al (1986). The major change
is that w_ in (3.3) factors into two parts. The first depends only on x and is of

b
lx)l/2

the form wl((xTB- ). The other depends only on

d(y.x.8) =y - g(x'0) - c(x'8.b/(x'B 1x)1"?)

and is of the form w2(|d(y.x.6)|).

The function ¢ and the matrix B in (3.3) will be chosen so that the side

B NP p Ap S tp t atptta AS p p S At et wp e ety e e e et pe
AR SRS AR T D e T R T N ST P R S R RS --.'..‘ CRIRN R S ._‘.-_' . I .
A s e A A L L O B N S A R R R S 2N Ot
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= b are satisfied. By the definition of

conditions (1.3) and s(y

cond) cond’

(1.3) holds if and only if for ali B and all a : C.

J(y-g(B)-c(B.a)) w, (ly-g(B)-c(B.2) Nexp(y B-G(B)-S(y)) mizZvj = 0. (3-4)

First we discuss the existence of 2 solurion to {I 4).

LFMMA 3.1 For any a > 0 and B, therz is a soclution ¢ = c(B.al ro (3.4).
PROOF: For fixed y. B, a, the funwriian
c— (y - g(f) ~ ) w(ly - gl¥) - cl|)
is continuous, bounded and monotone nonincreasing with lizits + a. Hence the
existence follows from dominated convergence and the intermedinre value theorem.
a

A practical advantage here is that often the function c can be calculated in
closed or almost close form. This is particularly important compared to (1.2),
where ¢ is a vector (depending only on 8) whose computation is quite difficult,
see Stefanski, et. al (1986), Section 2.4. Here are two examples where c(f,a) can
be calculated explicitly.

Example 3.1 : Logistic Regression Here u puts equal mass at 0 and 1, S(y)=0, and

G(B) = én{l + exp(B)}. VWrite p = exp(B)/(1 + exp(B)) and q = 1-p. It is easily

checked that
ap/q - p if <0 and a < g
c(B.a) = { q - aq/p if >0 and a < p
0 otherwvise

satisfies (3.4).

Example 3.2 : Negative Exponential Regression Here u 1is Lebesgue-measure on

[0.»). G(B) = -eén(-B). s(y) =0 and B < 0. Two cases occur.

If the bound a is large, the Huberization in ¥eond is one-sided {for large )

et . R e T T et RIS TR P S N

T e L e e e e e e e e
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‘ y's only), for small a's both large and small y's will be Huberized. It can be
i checked by straightforward calculations that the cutting point between the two h
3 cases is given by the equation e2Ba =1 + Pa, so that fa x - 0.797. In the former 3
E case c(f,a) = —B_l times the smaller solution of exp(x+Ba-1) = x and in the latter :
case c(B,a) = —B-l(l + log(Pa/(exp(fa) - exp(-Pa)))). *
E Turn now to the matrix B. It follows from the definition of wcond that
: s(¢cond) = b provided
Egl¥_  q(v.%.0.B) ¥ ,(v.x.0.B)'] = B. (3.5) N
Equation (3.5) is used to define B=B(9). B(68) depends also on the distribution F ?
of the explanatory variables. A necessary condition for (3.5) is b 2 p. but we do l
not know if it is also sufficient.
We have the following optimality result for ¢cond'
THEOREM 3.1 : Suppose that for a given b (3.5) has a solution B(6). Then Yeond . 5
minimizes tr(V(w)V(wcond)-l) among all ¢ satisfying (1.3) and ;
(;?2) Ic, V(*cond’—l Ic, < b2. :
Theorem 3.1 is a corollary of the following analogy to Theorem 1 of
Stefanski, et al. (1986). Note that Theorem 3.2 below also applies to any kind of i
model with explanatory variables. :
THEORFM 3.2 : Let 2(y,.x.8) be the likelihood score function. Define the score 3

function
1

v y.x.8) = (2-c)minZ(1.b2/{(e~c) B (e-c)}). (3.6)

cond(

where ¢ = c(x,08) and B = B(8) are assumed to exist and satisfy
E(¥ (v %.0)[x) = 0

E(¥y g (V- %.8) ¥ 4(v.x.6)") = B.

COTM

Then (3.6) minimizes tr(V(w)V(wcond)—l) among all ¢y satisfying (1.3) and

IURAL SRR




LW R W AT RN

sup IC V(\;»cond)'1 Ic, § b2,

(v.x) ¥

With the exception of multiplication by a constant matrix, wcond is unique almost

surely. a

PROOF OF THEORFM 3.2 The proof is almost identical to tha of Theorem 1 in

Stefanski, et al. (1986), once one notes that for any conditionally unbiased score
function ¢,
E c(x,8) ¥(y.x.0)
= E{c(x.8) E(y¥(y.x.8)|x)} = 0. o

The computational complexity of the conditional unbiased estimator is not
particular to the model (3.1). For instance, if we have a generalized linear
model with arbitrary link function h, we have to replace in (3.3) d(y.x.6.B) by

h'(x'6){y ~ g(h(x'0)) - c(h(x'8).b/((xB )12 | n'(xT8) 11)}.

where c(f,a) is still defined by (3.4).

In applications, the distribution F of the (xi} is unknown. It is common to

replace F by its empirical distribution. From (3.3) and (3.5), this means that we

solve
N A A
151 wcond(yi'xi'eN'BN) =0, (3.7)
N
-1 T T 4 T 2-~1 172 -
N 151 X%, v(x1 BN. b/(xj BN xj) ) = BN' (3.8)
where
v(B.a) = f(y-g(B)-c(B.a))2 wi(y.B.a)exp(yB—C(B)-S(y)) n(dy). (3.9)
w(y.B.a) = H (ly-g(B) - c(B.a)[) / |y-8(B) - <(B.a)| (3.10)

In many applications, improved protection against outliers through higher
breakdown points can be achieved by the use of redescending ¥ functions, see
Rousseeuw (1984). In equations (3.3), (3.4) and (3.10) the Huber function Hb

could be replaced by any of the redescenders such as Hampel's three part function

¢ or the Tukey biweight. The calculation of c¢(B.a) is of the same complexity as
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with the Huber function. The breakdown properties of such estimates remain to be

studied.

4 : THE EFFECT OF ESTIMATING THE MATRIX B

In the last section we derived the estimator defined by (3.7)-(3.8) as an
approximation to the optimal estimator which uses wcond(y.x,B.B(B)). We may
consider (3.7) and (3.8) as an M-estimator for both 6 and a nuisance parameter B.
The y-function defining this M-estimator is
y.x.G.B)T. x(x.G,B)T)T . where

(v
x(x.8.B) = x x! v(x'8, b/(x'B x)/?) - B.

cond(

The influence function of this estimator is (compare (1.4) and (1.5))

1c, (y.x.0.B) = D;! (0) (v . ,(v.x.8.8)". x(x.0.3)")\. (4.1)
where
d d
38 Ee[“‘cond(y'x'ﬁ'B)]’ﬁ=e “GA Ee[“‘cond(y""e'“]lA:B(e)
D, . = , , (1.2)
'EE'EG[““'B'B’]|B=9 "o Ee[“x'e'A’]|A=B(e)

By the definition of wcond and c(fB,a) in (3.3) and (3.4), wcond(y.x.B,A) satisfies

(1.3) for arbitrary A. Hence, Eefw d(y.x.G.A)] =0 for all A and the upper

con
right block of D¢ x is zero. This means that the 8 part of the influence function
for (3.7) and (3.8) is equal to
a -1
{- gbsetwcond(y.x.ﬁ.B)] IB=6} Veongly-x-8.B). (4.3)

On the other hand, the influence function for the optimal ¢0(y.x.9)

¢Cond(y.x.9.B(9)) is also equal to (4.3) because by the same argument,

A
R AT R YL A RN
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- g -
: D, () = - 2Bl BB | - 2Ry sl | S |
g 0 ap p=6 oA A<B 38 |
v
: 3 |
- = - =Epfy__ .(y.x.8.B)] :
: ap 0-"cond =0
S We have thus shown

- !

THEOREM 4.1 : The 8 part of the influence function in the case that 6§ and B are

x

'l Jl 'l

simultaneously estimated by (3.7) and (3.8) is the same as the influence function

o,

in the case that 6 alone is estimated using the optimal wo(y.x.e) =

'J ¢cond(y.x.6,B(9)). In particular, the asymptotic covariance matrix of GN is the
2: same in both cases. 0
o REMARKS :
Y i) Bn and Bn are not asymptotically independent: E [wcond X ] = 0 by (1.3), but

g GEX(X B.B)] B=6 # 0 in general.

ap
: ii) Because in linear regression with symmetric errors x does not depend on 8, an A
. analogue to Theorem 4.1 is obvious. In addition, estimation of the scale of the '
. errors does not change the asymptotic covariance either, and Gn is asymptotically ]
3 independent of all nuisance parameters.
o«
5 iii) From the finite sample interpretation of the influence function, (4.3) means
- the following: to the first order of approximation the change in Bn caused by
N adding or deleting an observation at (x,y) is
b a
: -1 N -1 -~ -~
~: —NEV 2 E H’com:l(y X B BN)IX ] wcond(y'x'eN'BN)‘

i=1 BB N
i.e. the change in BN has approximately no effect on the change in GN In this

sense the estimator (3.7)-(3.8) is reasonably stable. .
(iv) For the Fisher-consistent estimator (2.12)-(2.13) of Stefanski, et al.
(1986), there is no analogue of Theorem 4.1. The 6 part of the influence function

is in general a linear combination of WBI' Ee[¢BI [ x] and EG[WBleITlx]-B because

IR e s A




LR

Pl e e

. PRI WY . 3
(Rt AR o e Sl Nl i e . . “ ' . Sa BNa RSe BN LI

- 10 -

all blocks in D are in general different from zero.

We illustrate the conditional Fisher-consistent estimators on two examples of

logistic regression, the first considered by Stefanski, et al. (1986).

Example 5.1 : The Food Stamp Data

The response is whether or not one participates in the federal food stamp
program. Two dichotomous predictors are available, tenancy and supplemental
income. An additional predictor is log(l + monthly income). There were 150
observations, with 24 participating in the program. One observation, #5. is known
to be highly influential on the ordinary analysis, with another, #66, slightly
less influential. We used the Huber ¢ function with two values of b, and in one
case contrasted the use of the conditionally unbiased score function and the
biased score function with c{(f8,a) = 0. The latter choice was used by Stefanski,
et al. (1986) because of numerical problems in enforcing unconditional Fisher
consistency (1.2). In Table 1, we list the results of this analysis. We also
list the analysis one would obtain if one used a Hampel ¢ function with bend
points (6,14,32), see Hampel, et al. (1986, pages 66-67). For computational
convenience, rather than solving (3.4). in defining the function c{(B.a) we have
chosen to use the same formula as in Example 3.1, which should not affect the
results too severely.

In this example, the major difference is not among the biased and conditional
Fisher-consistent estimates, but rather among the choices of b {maximum likelihood
corresponds to b = @), With decreasing b the importance of supplemental income as

well as the weights for cases #5 and #66 decrease and the importance of
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log(1l+monthly income) increases.

Example 5.2 : Skin Vaso—constriction data

These data have appeared elsewhere in the context of robustness, see Pregibon
(1981). The response is the occurrence of vaso-constriction in the skin of the
digits and is regressed on the logarithms of the rate and volume of air inspired.
In our work, we took Rate32 = 0.30, see Pregibon (1981).

This data set is inherently unstable. As previous authors have shown, once
one deletes observations #4 and #18, almost perfect discrimination is possible.
Our analyses are listed in Table 2. We used the Huber weight function only, and
have selected various values of b. When we tried to use the Hampel ¥y function,
observations 4 and 18 were immediately given weight O, in which case even
computing the maximum likelihood estimates is delicate.

A biased analysis uses a Huber function with b = 6.408, but with c(f.a) = 0.
When we used this value of b in our conditional Fisher-consistent score, we find
that observations 4 and 18 are barely downweighted and the resulting analysis
looks very much like the usual likelihood analysis. As we move b to 5.5 and 5.0,
observations 4 and 18 are given very little weight, and parameter estimates and
standard errors change dramatically. In this example too the value of the

sensitivity b seems to be most important, and we recommend to successively

decrease b and see how estimates, standard errors and weights change.
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6 _: CONCLUSIONS

Conditionally unbiased score functions are appealing because their definition
does not depend on the distribution of the predictors {xi}. In the context of
robustness, the resulting estimators have an analogous optimality theory to that
already developed for unconditionally unbiased score functions. In addition,
conditionally unbiased score functions are often far easier to define. Although
ignoring the bias and setting ¢ = O turned out rot to matter much in the examples
considered, one can construct situations where this bias is large. With our

estimator, we avoid this problem with little additional complexity.
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TABLE 1

This is a reanalysis of the food stamp data. For selected observations, the
weights L in equation (3.3) are computed.

N Huber(7) Huber(7) Huber(5.5) Hampel (6, 14,32)
MLE c(B.a)=0 Conditional Conditional Conditional
Unbiased Unbiased Unbiased
Intercept 0.93 4.26 4.51 5.49 6.00
(1.62) (2.55) (2.54) (2.66) (2.76)
Tenancy -1.85 -1.85 -1.78 -1.76 -1.80
(.53) (.54) (.54) (.51) (.54)
Supplemental
Income 0.90 0.75 0.74 0.62 0.70
(.50) (.52) (.51) (.52) (.52)
Log(1+MI},
MI=Monthly
Income -0.33 -0.89 ~0.93 -1.10 -1.18
(.27) (.43) (.43) (.45) (.47)
Weights
#5 0.21 0.16 0.13 0.0
#66 0.76 0.60 0.41 0.54
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TABLE 2
This is a reanalysis of the skin vasoconstriction data. For selected
observations, the weights vy in equation (3.3) are computed.
T
Huber(6.41) Huber(6.41) Huber(5.5)
MLE c(p.a)=0 Conditional Conditional .
Unbiased Unbiased
Intercept -2.92 -5.71 ~2.98 -6.41
(1.29) (2.15) (1.35) (2.84)
log(volime) 5.22 9.13 5.27 9.98
{(1.93) (3.73) (1.93) (4.38)
log(rate) 4.63 8.09 4.67 .85 7
(1.79) (3.31) (1.86) (3.52) i
Weights
#4 0.38 >.80 0.25
#18 0.44 >.80 0.29 . N
J
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